ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
S.-H. Hong, K.-M. Kim, J.-H. Song, E.-N. Bang, H.-T. Kim, K.-S. Lee, A. Litnovsky, M. Hellwig, D. C. Seo, H. H. Lee, C. S. Kang, H.-Y. Lee, J.-H. Hong, J. G. Bak, H.-S. Kim, J.-W. Juhn, S.-H. Son, H.-K. Kim, D. Douai, C. Grisolia, J. Wu, G.-N. Luo, W.-H. Choe, M. Komm, M. van den Berg, G. De Temmerman, R. Pitts
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 36-43
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-897
Articles are hosted by Taylor and Francis Online.
One of the main missions of KSTAR is to develop long-pulse operation capability relevant to the production of fusion energy. After a full metal wall configuration was decided for ITER, a major upgrade for KSTAR was planned, to a tungsten first wall similar to the JET ITER-like wall (coatings and bulk tungsten plasma-facing components). To accomplish the upgrade, tungsten bonding technology has been developed and tested. Since the leading edges of each castellation structure have to be protected, shaping of tungsten blocks has been studied by ANSYS simulation, and the miniaturized castellation has been exposed to Ohmic plasma to confirm the simulation results. It is found that a shaped castellation block has more heat handling capability than a conventional block. For more dedicated experiments, a multipurpose castellation block is fabricated and exposed to Ohmic, L- and H-mode plasmas and observed by IR camera from the top. During the fabrication and assembly of the blocks, leading edges caused by “naturally misaligned” blocks due to engineering limits with a maximum level up to 0.5 mm have been observed, and these have to be minimized for the future fusion machine.