ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
H. Gota, TAE Team
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 44-49
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-871
Articles are hosted by Taylor and Francis Online.
C-2 is a unique, large compact-toroid (CT) device at Tri Alpha Energy that produces field-reversed configuration (FRC) plasmas by colliding and merging oppositely directed CTs. Significant progress has recently been made on C-2, achieving ~5 ms stable plasmas with a dramatic improvement in confinement, far beyond the prediction from the conventional FRC scaling. This stable, long-lived FRC plasma state is called the high-performance FRC (HPF) regime. The key approaches to achieve the HPF regime are as follows: (i) dynamic FRC formation by collision/merging of super-Alfvénic CTs, (ii) effective control of stability and transport by end-on plasma guns and neutral-beam (NB) injection, and (iii) active wall conditioning using titanium and lithium gettering systems. Moreover, further improvement in FRC confinement has been obtained with improved open-field-line plasma properties such as a lower fluctuation level, reduced transport rates in radial/axial directions, and lower background neutral density as well as recycling. This open-field-line plasma improvement, mainly obtained by higher magnetic fields in the formation and mirror-plug sections, allows for better NB coupling to the core-FRC plasma. In the recent HPF regime there is a sufficiently large fast-ion population that appears to improve FRC confinement properties as well as stability; the FRC particle and global energy confinement times both increased by ~30% and ~80%, respectively, compared to that of the previously obtained HPF regime.