ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
ANS webinar looks to the nuclear future of South Carolina
A recent webinar hosted by the American Nuclear Society featured leading experts in South Carolina’s nuclear sector, who discussed how the state will leverage its resources, history, and experience to become a frontrunner in new development. Hosted by ANS Executive Director/CEO Craig Piercy, it offered perspectives from the utility, commercial, and academic worlds.
T. Kariya, R. Minami, T. Imai, T. Kato, H. Idei, K. Hanada, H. Zushi, T. Numakura, Y. Endo, M. Ichimura
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 147-151
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-848
Articles are hosted by Taylor and Francis Online.
At the Plasma Research Center at University of Tsukuba, development of megawatt gyrotrons is being performed as a collaborative electron cyclotron heating (ECH) study with some research organizations. A 28 GHz 1 MW 1 s gyrotron has been developed to upgrade the GAMMA 10/PDX ECH systems. To improve the oscillation efficiency in high current regions, the magnetron injection gun (MIG) of the 28 GHz gyrotron has been modified. Output power of 1.25 MW has been achieved with this gyrotron. For the first step of the collaborative research between Tsukuba University and Kyushu University, the Tsukuba 28 GHz gyrotron was adapted to the Q-shu University Experiment with Steady-State Spherical Tokamak (QUEST) ECH system, and the plasma heating and current drive effect were demonstrated. We obtained successful results, including an electron cyclotron–driven plasma current of 66 kA in the QUEST plasma experiment. For the next step of the collaborative research, the design targets of a 2 MW 3 s and 0.4 MW continuous wave have been achieved in a design study of a new 28 GHz gyrotron.