ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
T. Kariya, R. Minami, T. Imai, T. Kato, H. Idei, K. Hanada, H. Zushi, T. Numakura, Y. Endo, M. Ichimura
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 147-151
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-848
Articles are hosted by Taylor and Francis Online.
At the Plasma Research Center at University of Tsukuba, development of megawatt gyrotrons is being performed as a collaborative electron cyclotron heating (ECH) study with some research organizations. A 28 GHz 1 MW 1 s gyrotron has been developed to upgrade the GAMMA 10/PDX ECH systems. To improve the oscillation efficiency in high current regions, the magnetron injection gun (MIG) of the 28 GHz gyrotron has been modified. Output power of 1.25 MW has been achieved with this gyrotron. For the first step of the collaborative research between Tsukuba University and Kyushu University, the Tsukuba 28 GHz gyrotron was adapted to the Q-shu University Experiment with Steady-State Spherical Tokamak (QUEST) ECH system, and the plasma heating and current drive effect were demonstrated. We obtained successful results, including an electron cyclotron–driven plasma current of 66 kA in the QUEST plasma experiment. For the next step of the collaborative research, the design targets of a 2 MW 3 s and 0.4 MW continuous wave have been achieved in a design study of a new 28 GHz gyrotron.