ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Sung-Ryul Huh, Nam-Kyun Kim, Yun-Chang Jang, Jae-Min Song, Gon-Ho Kim
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 105-112
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-892
Articles are hosted by Taylor and Francis Online.
The characteristics of a two–radio-frequency (RF)–driven dual antenna inductively coupled hydrogen plasma is investigated for the development of a high efficient RF negative hydrogen ion source driver. The two-RF-driven dual antenna system consists of a 2 MHz–driven solenoidal antenna wound around a cylindrical chamber and a 13.56 MHz–driven planar antenna placed on top of it. Compared to the conventional single frequency antenna inductively coupled plasmas, the two-RF-driven dual antenna inductively coupled plasma reveals two distinctive features, i.e., an increase in the power transfer efficiency and the bi-Maxwellization of the electron energy distribution function due to the collisionless heating. These characteristics allow the two-RF-driven dual antenna inductively coupled plasma to accomplish enhanced generation of negative ions and their precursors with a high RF efficiency.