ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
P. B. Parks, N. Alexander, C. Moeller, R. Callis
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 792-801
Technical Paper | doi.org/10.13182/FST14-834
Articles are hosted by Taylor and Francis Online.
This paper describes two intermediate-scale experiments designed to test basic principles of waveguide pellet acceleration, a novel method of using microwave power to generate propulsive thrust from flash vaporization of a “pusher” medium to accelerate a frozen deuterium-tritium fuel pellet. Results from a low-power stage I experiment using a surrogate pusher consisting of an inert medium with volume-distributed metallic particle absorbers are in good agreement with Parks' wave attenuation theory. In stage II, a high-powered short-pulsed gyrotron source will be used to vaporize a surrogate pusher in a closed system (waveguide/test cell) without an accelerating projectile (pellet) to create a thrust-generating gas of interesting pressures ∼60 to 100 bars and temperatures ∼600 to 1000 K. To compare theory and experiment, the vaporization of various volatile organic compounds with suspended metallic particle absorbers must be examined from a detailed thermodynamic perspective, given that large deviations from ideal-gas behavior arise from the intermolecular forces when these solvents transition from ambient to a dense, warm, supercritical fluid. Using the Peng-Robinson real-gas equation of state, a closed-form expression for the specific internal energy U(V, T) was found that self-consistently includes the intramolecular rotational-vibrational energies, of relevance when measurements of the expanded gas state are taken on timescales faster than the molecular decomposition time. Other thermodynamically significant properties, such as the Joule-Thomson inversion curve, that were calculated from this treatment are in excellent agreement with reported experimental data. This lends further support to the use of surrogate pusher media in place of deuterium.