ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
P. B. Parks, N. Alexander, C. Moeller, R. Callis
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 792-801
Technical Paper | doi.org/10.13182/FST14-834
Articles are hosted by Taylor and Francis Online.
This paper describes two intermediate-scale experiments designed to test basic principles of waveguide pellet acceleration, a novel method of using microwave power to generate propulsive thrust from flash vaporization of a “pusher” medium to accelerate a frozen deuterium-tritium fuel pellet. Results from a low-power stage I experiment using a surrogate pusher consisting of an inert medium with volume-distributed metallic particle absorbers are in good agreement with Parks' wave attenuation theory. In stage II, a high-powered short-pulsed gyrotron source will be used to vaporize a surrogate pusher in a closed system (waveguide/test cell) without an accelerating projectile (pellet) to create a thrust-generating gas of interesting pressures ∼60 to 100 bars and temperatures ∼600 to 1000 K. To compare theory and experiment, the vaporization of various volatile organic compounds with suspended metallic particle absorbers must be examined from a detailed thermodynamic perspective, given that large deviations from ideal-gas behavior arise from the intermolecular forces when these solvents transition from ambient to a dense, warm, supercritical fluid. Using the Peng-Robinson real-gas equation of state, a closed-form expression for the specific internal energy U(V, T) was found that self-consistently includes the intramolecular rotational-vibrational energies, of relevance when measurements of the expanded gas state are taken on timescales faster than the molecular decomposition time. Other thermodynamically significant properties, such as the Joule-Thomson inversion curve, that were calculated from this treatment are in excellent agreement with reported experimental data. This lends further support to the use of surrogate pusher media in place of deuterium.