ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
S. X. Zhao, Q. Li, W. J. Wang, C. Li, D. D. Zhang, R. Wei, S. G. Qin, Y. L. Shi, L. J. Peng, N. J. Pan, Y. Xu, G. H. Liu, T. J. Wang, D. M. Yao, G.-N. Luo
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 784-791
Technical Paper | doi.org/10.13182/FST14-835
Articles are hosted by Taylor and Francis Online.
A hot isostatic pressing (HIP) route has been developed by the Institute of Plasma Physics of the Chinese Academy of Sciences in collaboration with the Advanced Technology & Materials Co., Ltd. for bonding W/Cu tiles to Ni-electroplated CuCrZr heat sinks. During high-heat-flux testing, in the initial stage, Cu/Ni interfacial debonding was observed. Careful analyses indicated that interfacial oxidation during encapsulation for HIP processing using tungsten inert gas (TIG) welding was the main cause of the limited fatigue lifetime. Copper oxides formed during the TIG encapsulation do not decompose during HIP at 600°C. As a result, weak bonding and even some microcracks were generated, and unfortunately these microcracks could not be detected by current industrial ultrasonic probes. An oxidation-free encapsulation technique, suitable for batch processing, has been developed to achieve a thermal fatigue lifetime of more than 1000 cycles at a heat load of 5 MW/m2 for the components.