ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
S. X. Zhao, Q. Li, W. J. Wang, C. Li, D. D. Zhang, R. Wei, S. G. Qin, Y. L. Shi, L. J. Peng, N. J. Pan, Y. Xu, G. H. Liu, T. J. Wang, D. M. Yao, G.-N. Luo
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 784-791
Technical Paper | doi.org/10.13182/FST14-835
Articles are hosted by Taylor and Francis Online.
A hot isostatic pressing (HIP) route has been developed by the Institute of Plasma Physics of the Chinese Academy of Sciences in collaboration with the Advanced Technology & Materials Co., Ltd. for bonding W/Cu tiles to Ni-electroplated CuCrZr heat sinks. During high-heat-flux testing, in the initial stage, Cu/Ni interfacial debonding was observed. Careful analyses indicated that interfacial oxidation during encapsulation for HIP processing using tungsten inert gas (TIG) welding was the main cause of the limited fatigue lifetime. Copper oxides formed during the TIG encapsulation do not decompose during HIP at 600°C. As a result, weak bonding and even some microcracks were generated, and unfortunately these microcracks could not be detected by current industrial ultrasonic probes. An oxidation-free encapsulation technique, suitable for batch processing, has been developed to achieve a thermal fatigue lifetime of more than 1000 cycles at a heat load of 5 MW/m2 for the components.