ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
S. X. Zhao, Q. Li, W. J. Wang, C. Li, D. D. Zhang, R. Wei, S. G. Qin, Y. L. Shi, L. J. Peng, N. J. Pan, Y. Xu, G. H. Liu, T. J. Wang, D. M. Yao, G.-N. Luo
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 784-791
Technical Paper | doi.org/10.13182/FST14-835
Articles are hosted by Taylor and Francis Online.
A hot isostatic pressing (HIP) route has been developed by the Institute of Plasma Physics of the Chinese Academy of Sciences in collaboration with the Advanced Technology & Materials Co., Ltd. for bonding W/Cu tiles to Ni-electroplated CuCrZr heat sinks. During high-heat-flux testing, in the initial stage, Cu/Ni interfacial debonding was observed. Careful analyses indicated that interfacial oxidation during encapsulation for HIP processing using tungsten inert gas (TIG) welding was the main cause of the limited fatigue lifetime. Copper oxides formed during the TIG encapsulation do not decompose during HIP at 600°C. As a result, weak bonding and even some microcracks were generated, and unfortunately these microcracks could not be detected by current industrial ultrasonic probes. An oxidation-free encapsulation technique, suitable for batch processing, has been developed to achieve a thermal fatigue lifetime of more than 1000 cycles at a heat load of 5 MW/m2 for the components.