ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Dongxun Zhang, Wei Liu, Yuan Qian, Ji Que
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 681-684
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T109
Articles are hosted by Taylor and Francis Online.
Tritium was generated by the interaction of neutrons with the lithium and beryllium in the molten salt reactors (MSRs), which use Flibe as one of solvents of fluoride fuel. Tritium as by-product in the MSRs would be an important safety issue because it could easily diffuse through high temperature heat exchangers into environment. The experimental technique of gas driven permeation was used to investigate the transport parameter of hydrogen in Hastelloy C-276 which was considered as one of the candidate structure materials. The measurements were carried out at the temperature range of 400-800°C with hydrogen loading pressures ranging from 5×103 to 4×104 Pa. The H diffusive transport parameters for Hastelloy C-276 followed an Arrhenius law in this temperature range and were decreased due to the existence of the alloying elements compared with Ni201. The possible reason may be the trapping effects, which were formed by the alloying elements of Mo and Cr in the matrix. At the same time, the thin oxidation layer formed by the high Cr content could lead to the slower dissociation process of H2 at the surface.