ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
S.-H. Yun, M. H. Chang, H.-G. Kang, D. Y. Chung, Y. H. Oh, K. J. Jung, H. Chung, D. Koo, S. H. Sohn, K.-M. Song
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 671-676
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T107
Articles are hosted by Taylor and Francis Online.
ITER Storage and delivery system (SDS) is a complex assembly system. Lots of individual components including tens of storage beds, a few reactors, multiple transfer pumps, vessels, umpteen instruments & sensors which are interconnected with tubing and fittings in a confined glovebox system are to be installed in the given Tritium Plant area. The most important SDS getter bed will be utilized for absorbing and desorbing of hydrogen isotopes in accordance with the fusion fuel cycle scenario. This paper deals with R&D activities on SDS bed design, especially thermal hydraulic analysis in heat loss aspect, the real-time gas analysis in He-3 collection system, and introductory experimental plans using depleted uranium (DU) getter material for storage of hydrogen isotopes, especially of tritium.