ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Shunsuke Yoshimura, Ryosuke Yoshimura, Makoto Okada, Satoshi Fukada, Yuki Edao
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 658-661
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T104
Articles are hosted by Taylor and Francis Online.
Hydrogen transfer under a fluidized condition of Li-Pb is investigated experimentally to design a Li-Pb blanket system. Li-Pb eutectic alloy flows through inside of a Ni tube in the experimental system, where H2 permeates into and out of the forced Li-Pb flow. The overall H2 permeation rate is analyzed using a mass balance model. Hydrogen atoms diffuse in Ni and Li-Pb. The steady-state H2 permeation rate obtained by this experiment is smaller than the result of the calculation model. A resistance factor is introduced to the present analysis in order to evaluate the influence of other H2 transfer mechanisms, such as diffusion in Li-Pb and dissolution reaction between Ni and Li-Pb. The contribution of the resistance to the overall H2 permeation rate becomes large when the flow rate of Li-Pb is low. This is because the boundary layer thickness between Ni and Li-Pb affects the overall H2 permeation rate. When the flow velocity of Li-Pb is large, the thickness of the boundary layer becomes thin, and the driving force of H2 permeation through Ni wall becomes large.