ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
J. S. Wright, R. D. Torres, B. Peters, D. T. Hope, L. L. Tovo
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 639-642
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T99
Articles are hosted by Taylor and Francis Online.
The Savannah River Tritium Plant (TP) relies on well understood but aging sensor technology for process gas analysis. Although new sensor technologies have been brought to various readiness levels, the TP has been reluctant to install technologies that have not been tested in tritium service. This gap between sensor development and incorporating new technologies into practical applications demonstrates fundamental challenges that exist when transitioning from status quo to state-of-the-art in an extreme environment such as a tritium plant. These challenges stem from three root obstacles: 1) The necessity for a comprehensive assessment of process sensing needs and requirements; 2) The lack of a pick-list of process-compatible sensor technologies; and 3) The need to test sensors in a tritium-contaminated process environment without risking production.
At Savannah River, these issues are being addressed in a two phase project. In the first phase, TP sensing requirements were determined by a team of process experts. Meanwhile, Savannah River National Laboratory (SRNL) sensor experts identified candidate technologies and related them to the TP processing requirements. The resulting roadmap links the candidate technologies to actual plant needs. To provide accurate assessments of how a candidate sensor technology would perform in a contaminated process environment, an instrument demonstration station was established within a TP glove box. This station was fabricated to TP process requirements and designed to handle high activity samples. The combination of roadmap and demonstration station provides the following assets:
• Creates a partnership between the process engineers and researchers for sensor selection, maturation, and insertion
• Selects the right sensors for process conditions
• Provides a means for safely inserting new sensor technology into the process without risking production, and
• Provides a means to evaluate off normal occurrences where and when they occur.
This paper discusses the process to identify and demonstrate new sensor technologies for the Savannah River TP.