ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Y. Torikai, V. Kh. Alimov, K. Isobe, M. Oyaidzu, T. Yamanishi, R.-D. Penzhorn, Y. Ueda, H. Kurishita, V. Philipps, A. Kreter, M. Zlobinski, TEXTOR Team
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 619-622
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T94
Articles are hosted by Taylor and Francis Online.
Tungsten (W) specimens previously exposed to deuterium (D) plasmas both in the TEXTOR tokamak and high flux linear plasma generator (LPG) were subsequently loaded with tritium at 573 K for 3 h. Retention of tritium in the near-surface W layer was examined by imaging plate technique. On the TEXTOR-plasma-exposed W surface, tritium was mainly trapped in carbon deposits. For LPG-plasma-exposed W specimens, tritium was trapped in defects created in the near-surface layer during the course of D plasma exposure.