ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Florian Priester, Marco Röllig
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 539-542
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T74
Articles are hosted by Taylor and Francis Online.
Turbomolecular pumps (TMP) will be used with large amounts of tritium in future fusion machines like ITER, DEMO and in the KATRIN Experiment. In the work presented, a stress test of a Leybold® MAG W2800 with a tritium throughput of 1.1 kg over 384 days of operation was performed at TLK. After this, the pump was dismantled and the tritium uptake in several parts was determined. Especially the non-metallic parts of the pump absorb large amounts of tritium and are most likely responsible for the observed pollution of the process gas. The total tritium uptake of the TMP was estimated with 0.1-1.1 TBq. No radiation-induced damages were found on the inner parts of the pump. The TMP showed no signs of functional limitations during the 384 days of operation.