ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Florian Priester, Marco Röllig
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 539-542
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T74
Articles are hosted by Taylor and Francis Online.
Turbomolecular pumps (TMP) will be used with large amounts of tritium in future fusion machines like ITER, DEMO and in the KATRIN Experiment. In the work presented, a stress test of a Leybold® MAG W2800 with a tritium throughput of 1.1 kg over 384 days of operation was performed at TLK. After this, the pump was dismantled and the tritium uptake in several parts was determined. Especially the non-metallic parts of the pump absorb large amounts of tritium and are most likely responsible for the observed pollution of the process gas. The total tritium uptake of the TMP was estimated with 0.1-1.1 TBq. No radiation-induced damages were found on the inner parts of the pump. The TMP showed no signs of functional limitations during the 384 days of operation.