ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Hilary Phillips, Marc Parisot, Julian Dean, Lauren Perrie, John Sephton
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 527-530
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T71
Articles are hosted by Taylor and Francis Online.
Increasing quantities of radioactive waste are being placed into storage facilities. Many of the waste products contain organic materials which may undergo degradation leading to the release of tritium and carbon-14 species into waste containers and potentially into the environment. Monitoring for radioactive gas releases are required for environmental regulatory compliance and for radiation protection of facility workers.
Research is currently being undertaken at the National Physical Laboratory (NPL) as part of a European Metrology Research Programme (EMRP) project MetroRWM to adapt and automate existing environmental sampling techniques for tritium and carbon-14 species. An innovative modular system is being developed which will lead to the introduction of an on-site small scale system capable of gas collection, liquid scintillation sample preparation and measurement.
This paper outlines the evaluation of a liquid scintillation system that has been performed to date using active solutions of spiked trapping medium of similar activity concentrations to those anticipated in a waste repository. This system will operate using pre-set conditions for quench and luminescence derived from these and subsequent trials, unlike most other counters for which corrections for these phenomena are applied post measurement.