ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Yasuhisa Oya, Misaki Sato, Hiromichi Uchimura, Naoko Ashikawa, Akio Sagara, Naoaki Yoshida, Yuji Hatano, Kenji Okuno
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 515-518
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T68
Articles are hosted by Taylor and Francis Online.
The effect of carbon implantation for the dynamic recycling of deuterium, which demonstrates tritium recycling, including retention and sputtering, was investigated using in-situ sputtered particle measurements. The C+ implanted W, WC and HOPG were prepared and dynamic sputtered particles were measured during H2 + irradiation. It was found that the major hydrocarbon species for C+ implanted tungsten was found to be CH3, although those for WC and HOPG were CH4. The chemical state of hydrocarbon is controlled by the H concentration in a W-C mixed layer. The amount of C-H bond and the retention of H trapped by carbon atom should control the chemical form of hydrocarbon sputtered by H2+ irradiation and the desorption of CH3 and CH2 was due to chemical sputtering, although that for CH was physical sputtering. The activation energy for CH3 desorption was estimated to be 0.4 eV, corresponding to the trapping process of hydrogen by carbon through the diffusion in W. It was concluded that the chemical states of hydrocarbon sputtered by H2+ irradiation for W was determined by the amount of C-H bond on the W surface.