ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Yasuhisa Oya, Misaki Sato, Hiromichi Uchimura, Naoko Ashikawa, Akio Sagara, Naoaki Yoshida, Yuji Hatano, Kenji Okuno
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 515-518
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T68
Articles are hosted by Taylor and Francis Online.
The effect of carbon implantation for the dynamic recycling of deuterium, which demonstrates tritium recycling, including retention and sputtering, was investigated using in-situ sputtered particle measurements. The C+ implanted W, WC and HOPG were prepared and dynamic sputtered particles were measured during H2 + irradiation. It was found that the major hydrocarbon species for C+ implanted tungsten was found to be CH3, although those for WC and HOPG were CH4. The chemical state of hydrocarbon is controlled by the H concentration in a W-C mixed layer. The amount of C-H bond and the retention of H trapped by carbon atom should control the chemical form of hydrocarbon sputtered by H2+ irradiation and the desorption of CH3 and CH2 was due to chemical sputtering, although that for CH was physical sputtering. The activation energy for CH3 desorption was estimated to be 0.4 eV, corresponding to the trapping process of hydrogen by carbon through the diffusion in W. It was concluded that the chemical states of hydrocarbon sputtered by H2+ irradiation for W was determined by the amount of C-H bond on the W surface.