ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Teppei Otsuka, Kenichi Hashizume
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 511-514
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T67
Articles are hosted by Taylor and Francis Online.
In order to understand behaviors of hydrogen uptake and permeation in pure (αiron (αFe) during water corrosion around room temperature, hydrogen permeation experiments for a αFe membrane have been conducted by means of tritium tracer techniques. Hydrogen produced by water corrosion of αFe is trapped and/or blocked in/by product oxide layers to delay hydrogen uptake in αFe for a moment. However, the oxide layers do not work as a sufficient barrier for hydrogen uptake. Some of hydrogen dissolved in αFe could normally diffuse and permeate through the αFe bulk. Assuming hydrogen dissolution at the water/Fe interface proportional to the square root of the hydrogen pressure (Sieverts’ law), the partial hydrogen pressure were estimated to be 0.7, 5.0 and 9.5 kPa at 303, 323 and 348 K, respectively.