ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Reducing radiological exposure: Dominion Engineering’s president weighs in
The American Nuclear Society recently hosted a Supplier Showcase webinar, “Reducing Cumulative Radiological Exposure with Advanced Source Term Removal Technologies,” featuring Chuck Marks, president of Dominion Engineering, a consulting, equipment, and services company focused on improving nuclear power plant performance, efficiency, and reliability.
Teppei Otsuka, Kenichi Hashizume
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 511-514
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T67
Articles are hosted by Taylor and Francis Online.
In order to understand behaviors of hydrogen uptake and permeation in pure (αiron (αFe) during water corrosion around room temperature, hydrogen permeation experiments for a αFe membrane have been conducted by means of tritium tracer techniques. Hydrogen produced by water corrosion of αFe is trapped and/or blocked in/by product oxide layers to delay hydrogen uptake in αFe for a moment. However, the oxide layers do not work as a sufficient barrier for hydrogen uptake. Some of hydrogen dissolved in αFe could normally diffuse and permeate through the αFe bulk. Assuming hydrogen dissolution at the water/Fe interface proportional to the square root of the hydrogen pressure (Sieverts’ law), the partial hydrogen pressure were estimated to be 0.7, 5.0 and 9.5 kPa at 303, 323 and 348 K, respectively.