ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Ayano Nakamura, Kenzo Munakata, Keisuke Hara, Syodai Narita, Takahiko Sugiyama, Kenji Kotoh, Masahiro Tanaka, Tatsuhiko Uda
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 499-502
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T64
Articles are hosted by Taylor and Francis Online.
It is necessary to recover or process tritiated species that are extensively coexistent in nuclear fusion installations. A conventional way to recover tritium release to atmosphere is catalytic oxidation of tritiated species and adsorption of tritated water vapor on adsorbents with high surface areas. However, pressure loss would become more serious with increase in the size of adsorbent beds, which could lead to greater power needs for ventilation systems. Therefore, new adsorbents with low pressure loss and high surface areas need to be developed and utilized for such large-scale adsorption systems. Thus, the authors tested new types of adsorbents, which are gear-type and honeycomb-type pellet adsorbents. The experimental results reveal that the gear-type pellet adsorbents have larger adsorption capacity than the honeycomb-type pellet adsorbent. It was also found that the gear-type MS4A adsorbent possesses larger adsorption capacity than other adsorbents tested in this work. Furthermore, it was found that new types of adsorbents are lower pressure than conventional-type of adsorbents. Among the new adsorbents studied in this work, the gear-type MS4A adsorbent appears to be most promising for the application to the adsorption systems in terms of adsorption capacity and adsorption rate.