ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Kazuyoshi Hada, Kazunobu Nagasaki, Kai Masuda, Shinji Kobayashi, Shunsuke Ide, Akihiko Isayama, Ken Kajiwara
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 693-704
Technical Paper | doi.org/10.13182/FST14-811
Articles are hosted by Taylor and Francis Online.
By using a one-dimensional model, we analyze plasma start-up assisted by second-harmonic extraordinary-mode electron cyclotron (EC) resonance heating (ECRH). The model leads to energy transport equations for electrons and ions, particle transport equations for electrons and hydrogen atoms, and a toroidal current equation. These equations are solved for a cylindrically symmetrical plasma; that is, a torus straightened to a cylinder with a circular cross section and on-axis ECRH power absorption. The calculation indicates that ECRH has a threshold power for plasma start-up in JT-60SA. For example, approximately 1 MW of ECRH power is required for plasma start-up for an initial hydrogen atom density nH(t=0) = 3.0 × 1018 m-3, an error field Berr = 1 mT, carbon and oxygen impurity fractions nc/ne = no/ne = 0.1%, and an EC beam radius of approximately 5 cm. This estimated ECRH power is less than the planned power and increases sublinearly with the initial hydrogen atom density. The threshold power depends weakly on the error field and carbon impurity concentration. This is especially prominent for plasma start-up with a low initial hydrogen atom density. This result implies that suppressing the error field and carbon impurity density is helpful for reliable plasma start-up.