ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
P. V. Subhash, Y. Ghai, S. K. Amit, A. M. Begum, P. Vasu
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 705-717
Technical Paper | doi.org/10.13182/FST14-823
Articles are hosted by Taylor and Francis Online.
The differences in the electron cyclotron emission spectrum from a tokamak plasma between a direct line of sight (LOS) (normal to the toroidal magnetic field) and a slightly oblique LOS have been modeled. A typical ITER tokamak scenario has been chosen in this study. The usefulness of such an additional detector for obtaining a better radial resolution is examined. The intensities of the radiation, as observable from the low-field side, covering the first harmonic ordinary mode spectral frequencies ∼120 to 230 GHz have been compared. We find that at certain frequencies the radiation observed along the oblique view seems to come from a narrower region. This affords the possibility of realizing better radial spatial resolution, compared to that possible by a direct view alone, for localizing any fluctuations, identifying abrupt changes in the temperature profile, etc. The physical reasons for the code-predicted differences between the direct and oblique spectra are elucidated. The translation of the radial resolution calculations into realistic phenomena is studied for two situations: neoclassical tearing modes and a damped sinusoidal perturbation. For both cases, the oblique view yields a better reproduction of the situation.