ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
P. V. Subhash, Y. Ghai, S. K. Amit, A. M. Begum, P. Vasu
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 705-717
Technical Paper | doi.org/10.13182/FST14-823
Articles are hosted by Taylor and Francis Online.
The differences in the electron cyclotron emission spectrum from a tokamak plasma between a direct line of sight (LOS) (normal to the toroidal magnetic field) and a slightly oblique LOS have been modeled. A typical ITER tokamak scenario has been chosen in this study. The usefulness of such an additional detector for obtaining a better radial resolution is examined. The intensities of the radiation, as observable from the low-field side, covering the first harmonic ordinary mode spectral frequencies ∼120 to 230 GHz have been compared. We find that at certain frequencies the radiation observed along the oblique view seems to come from a narrower region. This affords the possibility of realizing better radial spatial resolution, compared to that possible by a direct view alone, for localizing any fluctuations, identifying abrupt changes in the temperature profile, etc. The physical reasons for the code-predicted differences between the direct and oblique spectra are elucidated. The translation of the radial resolution calculations into realistic phenomena is studied for two situations: neoclassical tearing modes and a damped sinusoidal perturbation. For both cases, the oblique view yields a better reproduction of the situation.