ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
P. V. Subhash, Y. Ghai, S. K. Amit, A. M. Begum, P. Vasu
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 705-717
Technical Paper | doi.org/10.13182/FST14-823
Articles are hosted by Taylor and Francis Online.
The differences in the electron cyclotron emission spectrum from a tokamak plasma between a direct line of sight (LOS) (normal to the toroidal magnetic field) and a slightly oblique LOS have been modeled. A typical ITER tokamak scenario has been chosen in this study. The usefulness of such an additional detector for obtaining a better radial resolution is examined. The intensities of the radiation, as observable from the low-field side, covering the first harmonic ordinary mode spectral frequencies ∼120 to 230 GHz have been compared. We find that at certain frequencies the radiation observed along the oblique view seems to come from a narrower region. This affords the possibility of realizing better radial spatial resolution, compared to that possible by a direct view alone, for localizing any fluctuations, identifying abrupt changes in the temperature profile, etc. The physical reasons for the code-predicted differences between the direct and oblique spectra are elucidated. The translation of the radial resolution calculations into realistic phenomena is studied for two situations: neoclassical tearing modes and a damped sinusoidal perturbation. For both cases, the oblique view yields a better reproduction of the situation.