ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
L. C. Carlson, E. L. Alfonso, H. Huang, A. Nikroo, M. E. Schoff, M. N. Emerich, T. Bunn, N. A. Antipa, J. B. Horner
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 762-770
Technical Paper | doi.org/10.13182/FST14-833
Articles are hosted by Taylor and Francis Online.
Capsules for inertial confinement fusion require precise measurement of isolated features and domes on the capsule's outer surface. Features that are too large must be removed. A 4pi capsule mapping and characterization system has been developed to map, identify, and measure domes using a Leica confocal microscope. An ultraviolet wavelength laser was integrated to laser-ablate the offending domes that exceed the allowable mix mass. Current process methods to remove domes require three different stations in different locations. The 4pi system achieves automated capsule handling, metrology, and laser polishing/ablation of domes on one device without losing track of the capsule's orientation. The measurement technique and metrology accuracy are compared to patch atomic force microscopy scans and phase-shifting diffraction interferometer measurements with good correlation. The laser polishing method has demonstrated analogous results to the current process methods, but in an automated fashion. Additionally, the 4pi capsule-handling capability of the system has been used to laser-ablate purposeful engineered designs into specialty capsules.