ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Ronald D. Boyd
Fusion Science and Technology | Volume 67 | Number 4 | May 2015 | Pages 754-761
Technical Paper | doi.org/10.13182/FST14-814
Articles are hosted by Taylor and Francis Online.
The hypervapotron (HV) has been demonstrated to be a superior thermal management (TM) and high heat flux removal (HHFR) technique for fusion reactor plasma-facing component applications involving a single-side absorbed heat flux (up to between 20 and 30 MW/m2). However, the conjugate heat transfer HV flow channel (HFC) only can be optimized completely when the related HHFR controlling parameters have been identified. In an earlier work, Part I of the present effort, we identified three high heat flux-side controlling TM and HHFR dimensionless parameters and a characteristic temperature difference. In the present work, six HV wall conjugate heat transfer dimensionless primary controlling parameters and five secondary controlling parameters have been identified. The controlling parameters include the effects of (1) most geometric specifications of the array of fins; (2) variations in the HV wall thermal conductivity and heat transfer coefficient; (3) effective Biot numbers characterizing effects that include the fin array, a typical fin example, and the side walls; (4) the HFC unobstructive portion flow aspect ratio, and (5) the HFC wall aspect ratio.