ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Shohei Matsuda, Kazunari Katayama, Motoki Shimozori, Satoshi Fukada, Hiroki Ushida, Masabumi Nishikawa
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 467-470
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T56
Articles are hosted by Taylor and Francis Online.
F82H is a primary candidate of structural material and coolant pipe material in a blanket of a fusion reactor. Understanding tritium permeation behavior through F82H is important. In a normal operation of a fusion reactor, the temperature of F82H will be controlled below 550 °C because it is considered that F82H can be used up to 30,000 hours at 550 °C. However, it is necessary to assume the situation where F82H is heated over 550 °C in a severe accident. In this study, hydrogen permeation behavior through F82H was investigated in the temperature range from 500 °C to 800 °C. In some cases, water vapor was added in a sample gas to investigate an effect of water vapor on hydrogen permeation. The permeability of hydrogen in the temperature range from 500 °C to 700 °C agreed well with the permeability reported by E. Serra et al. The degradation of the permeability by water vapor was not observed. After the hydrogen permeation reached in a steady state at 700 °C, the F82H sample was heated to 800 °C. The permeability of hydrogen through F82H sample which was once heated up to 800 °C was lower than that of the original one.