ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The Meta-Vistra deal: A closer look
With last Friday's announcement regarding its vision for nuclear energy, Meta has entered into 20-year power purchase agreements (PPAs) for more than 2,600 MW of electricity from a combination of three Vistra-owned nuclear plants to support the tech behemoth's planned operations in the PJM region.
J. E. Klein
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 416-419
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T42
Articles are hosted by Taylor and Francis Online.
The reduction in hydride absorption rate due to ”blanketing” can be explained in terms of a reduced hydrogen partial pressure in the bed due to the accumulation of inerts (i.e. non-hydrogen isotopes) in the bed void volume. Literature results show reduced absorption rates when protium for bed absorption contains helium with low-end inert compositions in the 0.6 to 1% range. A hydride bed containing 9.66 kg of LaNi4.25Al0.75 (LANA0.75) metal hydride - a nominal capacity of 1400 STP-L, was cycled repeatedly to decrepitate the hydride material into smaller particles for bed strain measurement. The hydride cycles added and removed nominally 1000 to 1100 STP-L of protium per hydride cycle. Consistent and repeatable absorptions results were observed for different absorption cycles. During one of the absorption tests, slower absorption results were obtained due to the use of typical grade (500 ppm inerts), instead of research grade, protium which blanketed the bed. The impact of 0.05% inerts in protium on bed absorption rate is shown and explained in terms of an increase in inert partial pressure as the bed was loaded.