ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
J. E. Klein
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 416-419
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T42
Articles are hosted by Taylor and Francis Online.
The reduction in hydride absorption rate due to ”blanketing” can be explained in terms of a reduced hydrogen partial pressure in the bed due to the accumulation of inerts (i.e. non-hydrogen isotopes) in the bed void volume. Literature results show reduced absorption rates when protium for bed absorption contains helium with low-end inert compositions in the 0.6 to 1% range. A hydride bed containing 9.66 kg of LaNi4.25Al0.75 (LANA0.75) metal hydride - a nominal capacity of 1400 STP-L, was cycled repeatedly to decrepitate the hydride material into smaller particles for bed strain measurement. The hydride cycles added and removed nominally 1000 to 1100 STP-L of protium per hydride cycle. Consistent and repeatable absorptions results were observed for different absorption cycles. During one of the absorption tests, slower absorption results were obtained due to the use of typical grade (500 ppm inerts), instead of research grade, protium which blanketed the bed. The impact of 0.05% inerts in protium on bed absorption rate is shown and explained in terms of an increase in inert partial pressure as the bed was loaded.