ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Alexander S. Khapov, Sergey K. Grishechkin, Vladimir G. Kiselev
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 412-415
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T41
Articles are hosted by Taylor and Francis Online.
Tritium permeation through structural materials is a key issue in many activities linked with tritium handling both for radiological safety and accountancy reasons to say nothing of economical aspect: tritium is not the cheapest material in the world. It is widely recognized that ceramic coatings provide an attractive solution to lower tritium permeation in structural materials. Alumina based ceramic coatings have the highest permeation reduction factor for hydrogen. Nevertheless even small cracking will significantly spoil the permeation reduction factor of a protecting coating. Nowadays for hydrogenating neutron tube targets with tritium “VNIIA” uses working chambers manufactured by pressing of alumina based ceramics. These chambers have revealed extremely low hydrogen permeation upon conditions of their application. For this reason an attempt was made to apply low porous ceramics as a structural material of a bed body for tritium storage in a setup used for hydrogenating neutron tube targets at “VNIIA”. The present article introduces the design of the bed. This bed possesses essentially less hydrogen permeation factor than traditionally used beds with stainless steel body. Bed heating in order to recover hydrogen from the bed is suggested to be implemented by high frequency induction means. Inductive heating allows decreasing the time necessary for tritium release from the bed as well as power consumption. Both of these factors mean less thermal power release into glove box where a setup for tritium handling is installed and thus causes fewer problems with pressure regulations inside the glove box. Inductive heating allows raising tritium sorbent material temperature up to melting point. The latter allows achieving nearly full tritium recovery.