ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
M. Higaki, T. Otsuka, K. Tokunaga, K. Hashizume, K. Ezato, S. Suzuki, M. Enoeda, M. Akiba
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 379-381
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T33
Articles are hosted by Taylor and Francis Online.
Hydrogen diffusion coefficients in a reduced activation ferritic/martensitic steel (F82H) and an oxide dispersion strengthened F82H (ODS-F82H) have been determined from depth profiles of plasma-loaded hydrogen with a tritium imaging plate technique (TIPT) in the temperature range from 298 K to 523 K. Data of hydrogen diffusion coefficients, D, in F82H are summarized as D [m2 s−1] =1.1×10−7 exp(−16[kJ mol−1]/RT). The present data indicate almost no trapping effect on hydrogen diffusion due to an excess entry of energetic hydrogen by the plasma loading, which results in saturation of the trapping sites at the surface and even in the bulk. In the case of ODS-F82H, data of hydrogen diffusion coefficients are summarized as D [m2 s−1] =2.2×10−7 exp(−30[kJ mol−1]/RT) indicating a remarkable trapping effect on hydrogen diffusion caused by tiny oxide particles in the bulk of F82H.