ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Y. Hatano, V. Kh. Alimov, A. V. Spitsyn, N. P. Bobyr, D. I. Cherkez, S. Abe, O. V. Ogorodnikova, N. S. Klimov, B. I. Khripunov, A. V. Golubeva, V. M. Chernov, M. Oyaidzu, T. Yamanishi, M. Matsuyama
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 361-364
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T30
Articles are hosted by Taylor and Francis Online.
The effects of displacement damage, plasma exposure and heat loads on T retention in reduced-activation ferritic/martensitic (RAFM) steels were investigated by exposing the steels to DT gas at 473 K. Despite enormous change in surface morphology, T retention in the heat-loaded specimen was comparable with that in the unloaded specimen. The exposure to plasma resulted in a drastic increase in T retention at the surface and/or sub surface. However, the T trapped at the surface/subsurface was easily removed by maintaining the specimens in air at ∼300 K. Formation of radiation-induced defects led to a significant increase in T retention, and T trapped in the defects was not removed at ∼300 K. These observations suggest that displacement damages have the largest effects on T retention at ∼473 K.