ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Industry Update—October 2025
Here is a recap of recent industry happenings:
New international partnership to speed Xe-100 SMR deployment
X-energy, Amazon, Korea Hydro & Nuclear Power, and Doosan Enerbility have formed a strategic partnership to accelerate the deployment of X-energy’s Xe-100 small modular reactors and TRISO fuel in the United States to meet the power demands from data centers and AI. The partners will collaborate in reactor engineering design, supply-chain development, construction planning, investment strategies, long-term operations, and global opportunities for joint AI-nuclear deployment. The companies also plan to jointly mobilize as much as $50 billion in public and private investment to support advanced nuclear energy in the U.S.
R. Größle, A. Beck, B. Bornschein, S. Fischer, A. Kraus, S. Mirz, S. Rupp
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 357-360
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T29
Articles are hosted by Taylor and Francis Online.
Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues. For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the TRitium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for inline monitoring of the tritium concentration in the liquid phase at the bottom of the distillation column of the ISS. The actual R&D work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H2, D2 and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydrogen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D,2 concentration in the 2nd vibrational branch of D2 FTIR spectra.