ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Alexey Golubev, Yuri Balashov, Sergey Mavrin, Valentina Golubeva, Dan Galeriu
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 349-352
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T27
Articles are hosted by Taylor and Francis Online.
Washout coefficient Λ is widely used as a parameter in washout models. These models describes overall HTO washout with rain by the first-order kinetic equation, while washout coefficient Λ depends on the type of rain event and rain intensity and empirical parameters a, b. It was shown recently that variations of published data of washout coefficient are significant. Thus Λ = 10−4 sec−1 for the light rain event (∼ 1 mm-hour−1) while Λ = 10−3 sec−1 for heavy rain (∼ 25 mm-hour−1). Canadian standard recommends washout coefficient of 1.8-10−4 sec−1, German standard gives 3.5-10−5sec−1, while published Japan data varies from Λ = (7.3 ± 4.1)-10−5 sec−1 at 2 mm hour−1 to Λ = 4.6-10−4 sec−1 for the same rain intensity. This means that further investigations of HTO washout process are required. One of the issues is determining the useful relationship between macroscopic parameter of HTO washout Λ and microscopic HTO exchange rate of HTO molecules in atmosphere and in the raindrop water. Approaches to address this issue have been presented elsewhere. It can be shown that the empirical parameters a, b can be represented through the rain event characteristics using the relationships for molecular impact rate, rain intensity and specific rain water content while washout coefficient can be represented through the exchange rate K, rain intensity, raindrop diameter and terminal raindrop velocity.