ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Alexey Golubev, Yuri Balashov, Sergey Mavrin, Valentina Golubeva, Dan Galeriu
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 349-352
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T27
Articles are hosted by Taylor and Francis Online.
Washout coefficient Λ is widely used as a parameter in washout models. These models describes overall HTO washout with rain by the first-order kinetic equation, while washout coefficient Λ depends on the type of rain event and rain intensity and empirical parameters a, b. It was shown recently that variations of published data of washout coefficient are significant. Thus Λ = 10−4 sec−1 for the light rain event (∼ 1 mm-hour−1) while Λ = 10−3 sec−1 for heavy rain (∼ 25 mm-hour−1). Canadian standard recommends washout coefficient of 1.8-10−4 sec−1, German standard gives 3.5-10−5sec−1, while published Japan data varies from Λ = (7.3 ± 4.1)-10−5 sec−1 at 2 mm hour−1 to Λ = 4.6-10−4 sec−1 for the same rain intensity. This means that further investigations of HTO washout process are required. One of the issues is determining the useful relationship between macroscopic parameter of HTO washout Λ and microscopic HTO exchange rate of HTO molecules in atmosphere and in the raindrop water. Approaches to address this issue have been presented elsewhere. It can be shown that the empirical parameters a, b can be represented through the rain event characteristics using the relationships for molecular impact rate, rain intensity and specific rain water content while washout coefficient can be represented through the exchange rate K, rain intensity, raindrop diameter and terminal raindrop velocity.