ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
D. Demange, I. Cristescu, E. Fanghänel, M. Glugla, N. Gramlich, T.L. Le, R. Michling,H. Moosmann, W.M. Shu, K.H. Simon, R. Wagner, S. Welte, R.S Willams
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 312-315
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T18
Articles are hosted by Taylor and Francis Online.
The CAPER facility of the Tritium Laboratory Karlsruhe has demonstrated the technology for the tokamak exhaust processing. CAPER has been significantly upgraded to pursue R&D towards highly tritiated water (HTW) handling and processing. The preliminary tests using a metal oxide reactor producing HTW afterward detritiated with PERMCAT were successful. In a later stage, a micro-channel catalytic reactor was installed in view of long term R&D program on HTW. The integration of this new system in CAPER was carried out along with a careful safety analysis due to high risk associated with such experiments. First experiments using the μ-CCR were performed trouble free, and HTW up to 360 kCi/kg was produced at a rate of 0.5 g/h. Such HTW was collected into a platinized zeolite bed (2 g of HTW for 20 g of Pt-zeolite), and in-situ detritiation was performed via isotopic exchange with deuterium. These first experimental results with tritium confirmed the potential for the capture and exchange method to be used for HTW in ITER.