ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Aurelien Chassery, Helene Lorcet, Joel Godlewski, Karine Liger, Christian Latge, Xavier Joulia
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 300-303
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T15
Articles are hosted by Taylor and Francis Online.
Within the framework of the dismantling of fast breeder reactors in France (PHENIX, SUPERPHENIX, RAPSODIE), several processes are under investigation regarding sodium disposal. One of them, called ELA (radioactive sodium waste treatment process), is based on the implementation of the sodium-water reaction, in a controlled and progressive way, to remove residual sodium mainly from the sodium purification systems called cold traps. This sodium contains impurities such as sodium hydride, sodium oxide and tritiated sodium hydride. The hydrolysis of these various chemical species leads to the production of a liquid effluent, mainly composed of an aqueous solution of sodium hydroxide, and a gaseous effluent, mainly composed of nitrogen (inert gas), hydrogen and steam. The tritium is distributed between these effluents, and, within the gaseous effluent, according to its forms HT and HTO. HTO being 10,000 times more radiotoxic than HT, a precise knowledge of the mechanisms governing the phase distribution of tritium is necessary. Indeed, it will help to design the process needed to optimize the treatment of the off-gas before its release into the environment. This paper presents the first experimental results from a parametric study on the tritium distribution between the various effluents generated during hydrolysis operations. This parametric study has been performed in a laboratory scale hydrolysis process designed at the CEA Cadarache.