ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
James P. Blanchard, Carl Martin
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 158-166
Technical Paper | doi.org/10.13182/FST14-796
Articles are hosted by Taylor and Francis Online.
The ARIES team is currently proposing two tungsten divertor concepts for its tokamak designs and has performed extensive analyses to optimize their thermal and structural performance. Because of the high divertor operating temperatures and the low ductility of tungsten, thermal creep and fracture will be important failure mechanisms to consider. This paper presents a series of finite element analyses addressing the viable operating ranges of these tungsten plate divertor concepts with respect to creep and fracture. For fracture, the J-integral, a path-independent contour integral that estimates the strain energy release rate for a crack of assumed geometry, is used to address crack propagation. Elliptical surface cracks are introduced both inside and outside the coolant channel, and steady-state calculations are carried out for both full-power and cold shutdown conditions. It is determined that the critical crack is on the inside of the coolant channel with the highest stress intensities at full-power operation. Also, transient creep simulations are performed to predict the high-temperature thermal deformations and creep strains at various surface flux levels. Finally, transient thermal calculations are carried out to simulate edge-localized modes in the plasma, and conclusions are drawn with respect to the severity and frequency of these events with respect to surface melting for the two concepts.