ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
James P. Blanchard, Carl Martin
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 158-166
Technical Paper | doi.org/10.13182/FST14-796
Articles are hosted by Taylor and Francis Online.
The ARIES team is currently proposing two tungsten divertor concepts for its tokamak designs and has performed extensive analyses to optimize their thermal and structural performance. Because of the high divertor operating temperatures and the low ductility of tungsten, thermal creep and fracture will be important failure mechanisms to consider. This paper presents a series of finite element analyses addressing the viable operating ranges of these tungsten plate divertor concepts with respect to creep and fracture. For fracture, the J-integral, a path-independent contour integral that estimates the strain energy release rate for a crack of assumed geometry, is used to address crack propagation. Elliptical surface cracks are introduced both inside and outside the coolant channel, and steady-state calculations are carried out for both full-power and cold shutdown conditions. It is determined that the critical crack is on the inside of the coolant channel with the highest stress intensities at full-power operation. Also, transient creep simulations are performed to predict the high-temperature thermal deformations and creep strains at various surface flux levels. Finally, transient thermal calculations are carried out to simulate edge-localized modes in the plasma, and conclusions are drawn with respect to the severity and frequency of these events with respect to surface melting for the two concepts.