ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
James P. Blanchard, Carl Martin
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 158-166
Technical Paper | doi.org/10.13182/FST14-796
Articles are hosted by Taylor and Francis Online.
The ARIES team is currently proposing two tungsten divertor concepts for its tokamak designs and has performed extensive analyses to optimize their thermal and structural performance. Because of the high divertor operating temperatures and the low ductility of tungsten, thermal creep and fracture will be important failure mechanisms to consider. This paper presents a series of finite element analyses addressing the viable operating ranges of these tungsten plate divertor concepts with respect to creep and fracture. For fracture, the J-integral, a path-independent contour integral that estimates the strain energy release rate for a crack of assumed geometry, is used to address crack propagation. Elliptical surface cracks are introduced both inside and outside the coolant channel, and steady-state calculations are carried out for both full-power and cold shutdown conditions. It is determined that the critical crack is on the inside of the coolant channel with the highest stress intensities at full-power operation. Also, transient creep simulations are performed to predict the high-temperature thermal deformations and creep strains at various surface flux levels. Finally, transient thermal calculations are carried out to simulate edge-localized modes in the plasma, and conclusions are drawn with respect to the severity and frequency of these events with respect to surface melting for the two concepts.