ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
James P. Blanchard, Carl Martin
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 158-166
Technical Paper | doi.org/10.13182/FST14-796
Articles are hosted by Taylor and Francis Online.
The ARIES team is currently proposing two tungsten divertor concepts for its tokamak designs and has performed extensive analyses to optimize their thermal and structural performance. Because of the high divertor operating temperatures and the low ductility of tungsten, thermal creep and fracture will be important failure mechanisms to consider. This paper presents a series of finite element analyses addressing the viable operating ranges of these tungsten plate divertor concepts with respect to creep and fracture. For fracture, the J-integral, a path-independent contour integral that estimates the strain energy release rate for a crack of assumed geometry, is used to address crack propagation. Elliptical surface cracks are introduced both inside and outside the coolant channel, and steady-state calculations are carried out for both full-power and cold shutdown conditions. It is determined that the critical crack is on the inside of the coolant channel with the highest stress intensities at full-power operation. Also, transient creep simulations are performed to predict the high-temperature thermal deformations and creep strains at various surface flux levels. Finally, transient thermal calculations are carried out to simulate edge-localized modes in the plasma, and conclusions are drawn with respect to the severity and frequency of these events with respect to surface melting for the two concepts.