ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, J. D. Rader
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 142-157
Technical Paper | doi.org/10.13182/FST14-792
Articles are hosted by Taylor and Francis Online.
Current predictions suggest that the target plate of a divertor, as one of the few solid surfaces directly exposed to the plasma of a magnetic fusion energy reactor, will be subject to steady-state heat fluxes as great as 10 MW/m2. Developing appropriate methods for cooling these divertors with helium is therefore a major technological challenge for plasma-facing components. This paper reviews dynamically similar experimental studies and numerical simulations of the thermal-hydraulic performance of two helium-cooled divertor concepts, the helium-cooled divertor with multiple-jet cooling (HEMJ) and the helium-cooled flat plate divertor, as well as a variant of the HEMJ, the so-called finger-type divertor, performed as part of the ARIES study. The results from these studies are extrapolated to prototypical conditions and used to predict the maximum average heat flux and coolant pumping power requirements for these divertor concepts. These extrapolations can be used to estimate how changes in the operating conditions, such as the helium inlet temperature and the maximum temperature of the divertor pressure boundary, affect thermal performance. Finally, the correlations from these extrapolations are used in the system code developed by the ARIES study.