ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, J. D. Rader
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 142-157
Technical Paper | doi.org/10.13182/FST14-792
Articles are hosted by Taylor and Francis Online.
Current predictions suggest that the target plate of a divertor, as one of the few solid surfaces directly exposed to the plasma of a magnetic fusion energy reactor, will be subject to steady-state heat fluxes as great as 10 MW/m2. Developing appropriate methods for cooling these divertors with helium is therefore a major technological challenge for plasma-facing components. This paper reviews dynamically similar experimental studies and numerical simulations of the thermal-hydraulic performance of two helium-cooled divertor concepts, the helium-cooled divertor with multiple-jet cooling (HEMJ) and the helium-cooled flat plate divertor, as well as a variant of the HEMJ, the so-called finger-type divertor, performed as part of the ARIES study. The results from these studies are extrapolated to prototypical conditions and used to predict the maximum average heat flux and coolant pumping power requirements for these divertor concepts. These extrapolations can be used to estimate how changes in the operating conditions, such as the helium inlet temperature and the maximum temperature of the divertor pressure boundary, affect thermal performance. Finally, the correlations from these extrapolations are used in the system code developed by the ARIES study.