ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
X. R. Wang, M. S. Tillack, C. Koehly, S. Malang, H. H. Toudeshki, F. Najmabadi, ARIES Team
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 22-48
Technical Paper | doi.org/10.13182/FST14-797
Articles are hosted by Taylor and Francis Online.
ARIES-ACT1 engineering design efforts were devoted to developing a credible configuration that allows for rapid removal of full-power core sectors followed by disassembly in hot cells during maintenance. The power core evolved with the main objective of achieving high performance while maintaining attractive design features and credible configuration, maintenance, and fabrication processes. To achieve high availability and maintainability of a fusion power plant, the power core components of a sector, including inboard and outboard first wall (FW)/blankets, upper and lower divertors, and structural ring or high-temperature shield, were integrated into one replacement unit to minimize time-consuming handling inside the plasma chamber. As with the ARIES-AT design, the FW/blanket design was based on Pb-17Li as coolant and breeder, and low-activation SiC/SiC as structural material; however, the Pb-17Li mass flow rate control, flow path, FW and blanket cooling channels, coolant access pipes, and blanket structural configuration have been revised and improved to provide about the same thermal performance (∼58% thermal efficiency) while keeping the magnetohydrodynamic pressure drop and pumping power, material temperature, and stresses at an acceptable level. Helium-cooled W or W-alloy divertor concepts were developed to accommodate a peak surface heat flux up to ∼14 MW/m2. They include a smaller finger-based divertor and a midsized T-tube and larger plate-type divertor concepts, which take advantage of a simple configuration, and the smaller number of plate units and joints in a power plant. The two-zone divertor concept, with the combination of a finger-based divertor and plate-type divertor, was selected and integrated into the ARIES-ACT1 power core. The fingers are used to accommodate the designed peak heat flux of ∼13 MW/m2, while the plate-type divertor is used for the lower heat flux region. The overall power core configuration and system integration, as well as the definitions of major power core components, such as the FW/blankets, divertor, structural ring, and the vacuum vessel, are described here and the main design features are highlighted. Sector maintenance operations have been investigated and motion demonstrations for removing the power core sectors have been performed using state-of-the-art three-dimensional CAD to analyze the clearances and spaces in all directions. The maintenance sequence and procedure for removing the replacement unit from the plasma chamber to the hot cell for exchange and refurbishment are also discussed in this paper.