ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
IAEA program uses radioisotopes to protect rhinos
After two years of testing, the International Atomic Energy Agency and the University of the Witwatersrand in Johannesburg, South Africa, have begun officially implementing the Rhisotope Project, an innovative effort to combat rhino poaching and trafficking by leveraging nuclear technology.
Zongwei Wang, Dangzhong Gao, Xiaojun Ma, Jie Meng
Fusion Science and Technology | Volume 66 | Number 3 | November 2014 | Pages 432-437
Technical Paper | doi.org/10.13182/FST14-808
Articles are hosted by Taylor and Francis Online.
A new technique based on a vertical scanning white-light interferometry is developed for measuring fuel pressure in inertial confinement fusion (ICF) multiple-shell polymer-microsphere targets. Nuclear fuel pressure is an essential parameter for estimating fusion efficiency in ICF experiments. This parameter is difficult to determine because of complicated target structures, short measurement time, relatively short optical path length changes, and expansion of the target after pressurization. To reduce the effects due to changes in diameter, a model is proposed to correct for the expansion at the radial orientation for multiple-shell polymer microspheres. The model is compared to a destructive method, and D2 fill pressure accuracy is confirmed within a 10% error of uncertainty.