ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Bin Liu, Huasi Hu, Tiankui Zhang, Xingyin Guan
Fusion Science and Technology | Volume 66 | Number 3 | November 2014 | Pages 405-413
Technical Paper | doi.org/10.13182/FST13-775
Articles are hosted by Taylor and Francis Online.
Parameters of fusion reaction history play an important role in inertial confinement fusion diagnosis. Two types of detectors, named gas Cherenkov detector (GCD) and gamma reaction history (GRH), have been well applied for measurement of fusion reaction history due to their fast responses and capacities for setting the threshold. This study was carried out in two stages. First, simulation of some components of the GRH system was carried out with Geant4. Second, an optimization method by combining a genetic algorithm with the Geant4 code was established and applied to the optical reflectors of the GRH system. The optimization process was focused on 16.7-MeV gamma rays with a threshold of 12 MeV. An optimal time response of 5 ps and an efficiency at the receiving surface of 2.2661×10−2 Cherenkov photons/incident 16.7-MeV gamma ray were obtained at 1.9158 atm of CO2 pressure and a temperature of 20°C.