ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Glen R. Longhurst, Alex Kratville
Fusion Science and Technology | Volume 66 | Number 3 | November 2014 | Pages 385-393
Technical Paper | doi.org/10.13182/FST14-801
Articles are hosted by Taylor and Francis Online.
A simple laboratory experiment was constructed to demonstrate in a classroom setting hydrogen permeation under conditions typical of some nuclear applications. The goal was to allow students to find both solubility and diffusivity parameters for hydrogen moving through commercial stainless steel tubing. The purpose of the present work is to compare test results from this laboratory experiment with results from others to validate the experiment. Hydrogen mixed with argon was admitted to a heated test chamber containing a coiled Type 316 stainless steel tube. Pure argon sweep gas was passed through the tube to a process-gas mass spectrometer where composition transients of pertinent gas species were recorded. Fits of a theoretical transient model to the experimental data gave values of both diffusivity and solubility of hydrogen in the stainless steel tube. Tests were conducted at hydrogen partial pressures ranging from 1.7 to 83 kPa and tube temperatures from 636 to 770 K. The form of the permeation transient data was fit well by a classical theoretical model. Observed values of diffusivity and solubility of hydrogen in the stainless steel from these transients were similar to literature values with some notable differences. Evidence of permeation delay due to interference by the diluting Ar was observed. Limitations of the experimental system are discussed.