ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Andrey Markin, Alexander Gorodetsky, Francesco Scaffidi-Argentina, Heinrich Werle, Chung H. Wu, Andrey Zakharov
Fusion Science and Technology | Volume 38 | Number 3 | November 2000 | Pages 363-368
Technical Paper | Special Issue on Beryllium Technology for Fusion | doi.org/10.13182/FST00-A36151
Articles are hosted by Taylor and Francis Online.
Deuterium trapping in beryllium oxide films irradiated with 400 eV D ions has been studied by Thermal Desorption Spectroscopy (TDS). It has been found that for thermally grown BeO films implanted in the range 300–900 K the total deuterium retention doesn’t depend on irradiation temperature whereas TDS spectra are temperature dependent. For R.T. implantation the deuterium is released in a wide range from 500 to 1100 K. At implantation above 600 K the main portion of retained deuterium is released in a single peak centered at about 1000 K. The similar TDS peak is measured for D/BeO co-deposited layer. In addition we correlate our implantation data on BeO with the relevant data on beryllium metal and carbon. The interrelations between deuterium retention and microstructure are discussed.