ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
I.B. Kupriyanov, V.V. Vlasov
Fusion Science and Technology | Volume 38 | Number 3 | November 2000 | Pages 350-356
Technical Paper | Special Issue on Beryllium Technology for Fusion | doi.org/10.13182/FST00-A36149
Articles are hosted by Taylor and Francis Online.
The efficiency of the beryllium application as a plasma-facing material and a neutron multiplier in a solid breeder blanket will depend on helium-induced swelling and tritium and helium release from this metal. The effect of a neutron irradiation on helium and tritium mobility and swelling for three beryllium grades fabricated by VNIINM is described in this paper. The beryllium blocks were irradiated with a neutron fluence (E >0.1 MeV) (2.6 – 3.4). 1021 cm−2 ( 1.3 – 1.8 dpa ) at 550°C, 620°C and 790°C. Mass-spectrometry techniques was used to simultaneously monitoring of gas release during isothermal multi-stage annealing over 500 – 1300°C temperature range. It is shown that the first signs of the helium release have been detected at temperature about 700°C, while the intense tritium release has occurred at all stages of annealing. Based on the data obtained, the diffusion parameters ( Do, E ) for both the gases in beryllium were calculated. The total amount of helium accumulated in irradiated beryllium varied from 240 appm to 620 appm. The tritium mobility increases significantly when swelling increases, while that for helium changes very slightly. With swelling increase from 0.5 to 1.8 % the ratio of helium to tritium retentions changes approximately from 4:1 to 10:1. The tritium and helium retentions and beryllium swelling are presented as functions of the distance from the irradiated surface. The experimental data are also discussed in comparison with calculations.