ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
R. A. Anderl, R. J. Pawelko, G. R. Smolik, F. Scaffidi-Argentina, D. Davydov
Fusion Science and Technology | Volume 38 | Number 3 | November 2000 | Pages 283-289
Technical Paper | Special Issue on Beryllium Technology for Fusion | doi.org/10.13182/FST00-A36141
Articles are hosted by Taylor and Francis Online.
This paper reports the results of chemical reactivity experiments for Be pebbles (2-mm and 0.2-mm diameter) and Be powder (14–31 μm diameter) exposed to steam at elevated temperatures, 350 to 900°C for pebbles and 400 to 500°C for powders. We measured BET specific surface areas of 0.12 m2/g for 2-mm pebbles, 0.24 m2/g for 0.2-mm pebbles and 0.66 to 1.21 m2/g for Be powder samples. These experiments showed a complex reactivity behavior for the material, dependent primarily on the test temperature. Average H2 generation rates for powder samples, based on measured BET surface areas, were in good agreement with previous measurements for fully-dense CPM-Be. Rates for the Be pebbles, based on measured BET surface areas, were systematically lower than the CPM-Be rates, possibly because of different surface and bulk features for the pebbles, especially surface-layer impurities, that contribute to the measured BET surface area and influence the oxidation process at the material surface.