ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DNFSB’s Summers ends board tenure, extending agency’s loss of quorum
Lee
Summers
The Defense Nuclear Facilities Safety Board, the independent agency responsible for ensuring that Department of Energy facilities are protective of public health and safety, announced that the board’s acting chairman, Thomas Summers, has concluded his service with the agency, having completed his second term as a board member on October 18.
Summers’ departure leaves Patricia Lee, who joined the DNFSB after being confirmed by the Senate in July 2024, as the board’s only remaining member and acting chair. Lee’s DNFSB board term ends in October 2027.
Denis Chatain, Jean Paul Perin, Olivier Chanal, Denis Desenne
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 143-148
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36132
Articles are hosted by Taylor and Francis Online.
The cryogenic targets of the Laser Megajoule facility (LMJ) are hollow spheres. Their internal walls are covered with a solid layer of frozen deuterium-tritium (D-T). One issue of inertial confinement fusion experiments is to guarantee the quality of the geometry of fuel layer. Cryogenic targets must be cooled at a temperature near the triple point (19K) with a very good stability (0.2mK) for many hours. This period is used to position the target with an accuracy of ±5μm at the center of the experimental vacuum vessel where the 240 laser beams are focalized. A complex cryogenic infrastructure has been conceived to insure the continuity of the cryogenic chain from the filling station located at CEA/Valduc in Burgundy to the LMJ experimental chamber installed in the vicinity of Bordeaux. The design of the target and a detailed description of the infrastructure are presented. A first prototype of cryogenic grip has been fabricated and characterized. Some experimental results are given.