ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Denis Chatain, Jean Paul Perin, Olivier Chanal, Denis Desenne
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 143-148
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36132
Articles are hosted by Taylor and Francis Online.
The cryogenic targets of the Laser Megajoule facility (LMJ) are hollow spheres. Their internal walls are covered with a solid layer of frozen deuterium-tritium (D-T). One issue of inertial confinement fusion experiments is to guarantee the quality of the geometry of fuel layer. Cryogenic targets must be cooled at a temperature near the triple point (19K) with a very good stability (0.2mK) for many hours. This period is used to position the target with an accuracy of ±5μm at the center of the experimental vacuum vessel where the 240 laser beams are focalized. A complex cryogenic infrastructure has been conceived to insure the continuity of the cryogenic chain from the filling station located at CEA/Valduc in Burgundy to the LMJ experimental chamber installed in the vicinity of Bordeaux. The design of the target and a detailed description of the infrastructure are presented. A first prototype of cryogenic grip has been fabricated and characterized. Some experimental results are given.