ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Denis Chatain, Jean Paul Perin, Olivier Chanal, Denis Desenne
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 143-148
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36132
Articles are hosted by Taylor and Francis Online.
The cryogenic targets of the Laser Megajoule facility (LMJ) are hollow spheres. Their internal walls are covered with a solid layer of frozen deuterium-tritium (D-T). One issue of inertial confinement fusion experiments is to guarantee the quality of the geometry of fuel layer. Cryogenic targets must be cooled at a temperature near the triple point (19K) with a very good stability (0.2mK) for many hours. This period is used to position the target with an accuracy of ±5μm at the center of the experimental vacuum vessel where the 240 laser beams are focalized. A complex cryogenic infrastructure has been conceived to insure the continuity of the cryogenic chain from the filling station located at CEA/Valduc in Burgundy to the LMJ experimental chamber installed in the vicinity of Bordeaux. The design of the target and a detailed description of the infrastructure are presented. A first prototype of cryogenic grip has been fabricated and characterized. Some experimental results are given.