ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Robert Cook
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 74-82
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36120
Articles are hosted by Taylor and Francis Online.
Model calculations have been performed to provide guidance for the development of solution spray techniques for coating NIF scale mandrels with 150 μm thick polyimide ablator layers. The deposition models considered assume independent random placement of the spray droplets on the mandrel surface followed by their spreading to form thin disk-like additions. The dependence on the final surface roughness of the effective thickness of the addition, the size (diameter) of the addition, and the cross-sectional profile of the addition have been explored. In addition, a model that assumes randomly placed, independent additions that cover 50% of the mandrel surface per addition is considered For each model and parameter set the rms surface finish is calculated as well as the surface power spectra. The primary result is that individual, randomly placed coating additions must be very thin, on the order of a few nm at most, if NIF surface specifications are to be met.