ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Robert Cook
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 74-82
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36120
Articles are hosted by Taylor and Francis Online.
Model calculations have been performed to provide guidance for the development of solution spray techniques for coating NIF scale mandrels with 150 μm thick polyimide ablator layers. The deposition models considered assume independent random placement of the spray droplets on the mandrel surface followed by their spreading to form thin disk-like additions. The dependence on the final surface roughness of the effective thickness of the addition, the size (diameter) of the addition, and the cross-sectional profile of the addition have been explored. In addition, a model that assumes randomly placed, independent additions that cover 50% of the mandrel surface per addition is considered For each model and parameter set the rms surface finish is calculated as well as the surface power spectra. The primary result is that individual, randomly placed coating additions must be very thin, on the order of a few nm at most, if NIF surface specifications are to be met.