ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
James K. Hoffer
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 1-5
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36106
Articles are hosted by Taylor and Francis Online.
The first observation of the beta-layering phenomenon showed that it was possible to fabricate inertial confinement fusion (ICF) targets having an outer ablating shell surrounding a symmetric solid layer of DT fusion fuel. The sensitivity of fusion yield to the internal DT ice roughness is a function of many factors, one of which is the relatively low density of solid DT (0.25 g/cm3), leading to a high Atwood number for the ablator/fuel interface. This is one of the issues that has led us to consider other DT-based fuels having higher densities than pure DT but still capable of being automatically redistributed into a uniform layer by beta-layering. The two principle conditions for beta-layering redistribution, self-heating and a moderately high vapor pressure, can be found in only a few other systems. But by concentrating on hydrides of elements in the second row of the periodic chart, we can find materials which should beta-layer and which might be good candidates for fusion fuel. We exclude lithium hydride and beryllium hydride, because these materials are solids at room temperature where an automatic redistribution technique such as beta-layering would not be necessary. Therefore we begin with boron and consider the following materials: