ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
T. Okita, K. Asari, S. Fujita, M. Itakura
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 289-294
Technical Paper | doi.org/10.13182/FST13-756
Articles are hosted by Taylor and Francis Online.
Molecular dynamics simulations were conducted using six interatomic potentials for face-centered cubic metals that differed only in the stacking fault energies (SFEs). We investigated the effects of the SFE on interactions between an edge dislocation and a void of 4.0 nm diameter at 13 intersection positions. In the high SFE, most interaction morphologies at the depinning are such that the two partial dislocations reverse into the perfect dislocation locally at the void interface. In contrast, in the low SFE, the partial dislocations are depinned individually from the void with some certain time lag. The critical resolved shear stress (CRSS) is not symmetrical about the center of the void. CRSS is higher when the center of the void is located not on the glide plane, but in the compressive side of the edge dislocation. In some cases for these conditions, climb motion is observed, which further increases CRSS. The probability of climb motion occurrence is higher with higher SFE. In lower SFE, climb motion occurs temporarily, followed by the disappearance of jog by dislocation releasing several vacancies inside of the void. CRSS is higher with higher SFE for all the intersection positions.