ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
F. Granberg, D. Terentyev, K. O. E. Henriksson, F. Djurabekova, K. Nordlund
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 283-288
Technical Paper | doi.org/10.13182/FST13-728
Articles are hosted by Taylor and Francis Online.
Iron carbide (Fe3C), also known as cementite, is present in many steels and has also been seen as nanosized precipitates in steels. We examine the interaction of edge dislocations with nanosized cementite precipitates in Fe by molecular dynamics. The simulations are carried out with a Tersoff-like bond order interatomic potential by Henriksson et al. for Fe-C-Cr systems. Comparing the results obtained with this potential for a defect free Fe system with results from previously used potentials, we find that the potential by Henriksson et al. gives significantly higher values for the critical stress, at least at low temperatures. The explanation was found to be the difference in the core structure of the edge dislocation. The results show that edge dislocations can unpin from cementite precipitates of sizes 1 nm and 2 nm even at a temperature of 1 K, although the stresses needed for this are high. On the other hand, a 4 nm precipitate is not sheared by edge dislocations at low temperatures (≤100 K) on our simulation timescale.