ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
F. Granberg, D. Terentyev, K. O. E. Henriksson, F. Djurabekova, K. Nordlund
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 283-288
Technical Paper | doi.org/10.13182/FST13-728
Articles are hosted by Taylor and Francis Online.
Iron carbide (Fe3C), also known as cementite, is present in many steels and has also been seen as nanosized precipitates in steels. We examine the interaction of edge dislocations with nanosized cementite precipitates in Fe by molecular dynamics. The simulations are carried out with a Tersoff-like bond order interatomic potential by Henriksson et al. for Fe-C-Cr systems. Comparing the results obtained with this potential for a defect free Fe system with results from previously used potentials, we find that the potential by Henriksson et al. gives significantly higher values for the critical stress, at least at low temperatures. The explanation was found to be the difference in the core structure of the edge dislocation. The results show that edge dislocations can unpin from cementite precipitates of sizes 1 nm and 2 nm even at a temperature of 1 K, although the stresses needed for this are high. On the other hand, a 4 nm precipitate is not sheared by edge dislocations at low temperatures (≤100 K) on our simulation timescale.