ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
M. E. Sawan
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 272-277
Technical Paper | doi.org/10.13182/FST13-717
Articles are hosted by Taylor and Francis Online.
The amount and type of gaseous and metallic transmutants produced in tungsten (W) when used as a plasma-facing armor in magnetic (MFE) and inertial (IFE) confinement fusion systems were determined and compared to those obtained following irradiation in fission reactors. Up to ∼8% metallic transmutants are generated at the expected lifetime of the fusion blanket. Irradiation in fission reactors to the same fast neutron fluence yields a much larger amount of metallic transmutation products than in fusion systems. While the dominant component in fusion systems is rhenium (Re), osmium (Os) is the main transmutation product in fission reactors. The impact on the W properties needs to be assessed. The results of this work will help guide irradiation experiments in fission reactors to properly simulate the conditions in fusion systems by possible direct implantation of transmutation products in irradiated samples. In addition, the results represent a necessary input for modeling activities aimed at understanding the expected effects on properties.