ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
P. Norajitra, W. W. Basuki, L. Spatafora, U. Stegmaier
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 266-271
Technical Paper | doi.org/10.13182/FST13-739
Articles are hosted by Taylor and Francis Online.
A modular He-cooled divertor concept for DEMO has been pursued at KIT with the goal of reaching 10 MW/m2. The reference design uses small tungsten-based cooling fingers of about 20 mm in size. They consist of a tungsten tile as a thermal shield that is to be connected to a thimble heat sink structure from W–1 wt% La2O3 (WL10) tungsten alloy. The lower boundary of the divertor operating temperature window is predicted by the ductile-to-brittle temperature and the upper boundary by the recrystallization temperature of WL10 material, currently assumed at 600°C and 1300°C, respectively. The important requirements for the joint between the W tile and WL10 thimble are (a) functioning as a crack stopper, (b) resisting a high operating temperature of about 1200°C, and (c) using low-activation material as an interlayer. Previously used PdNi brazing material has been successfully tested at a brazing temperature of about 1270°C. The mock-ups produced in this way are sufficient for the HHF tests without neutrons. In a further step to approach the DEMO requirements with higher demands, the use of low-activating titanium with a melting point of 1668°C as bonding material was examined both for brazing and for diffusion welding of tungsten parts. This paper reports on the first successful test results of both high-temperature brazing and diffusion bonding techniques.