ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
P. Norajitra, W. W. Basuki, L. Spatafora, U. Stegmaier
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 266-271
Technical Paper | doi.org/10.13182/FST13-739
Articles are hosted by Taylor and Francis Online.
A modular He-cooled divertor concept for DEMO has been pursued at KIT with the goal of reaching 10 MW/m2. The reference design uses small tungsten-based cooling fingers of about 20 mm in size. They consist of a tungsten tile as a thermal shield that is to be connected to a thimble heat sink structure from W–1 wt% La2O3 (WL10) tungsten alloy. The lower boundary of the divertor operating temperature window is predicted by the ductile-to-brittle temperature and the upper boundary by the recrystallization temperature of WL10 material, currently assumed at 600°C and 1300°C, respectively. The important requirements for the joint between the W tile and WL10 thimble are (a) functioning as a crack stopper, (b) resisting a high operating temperature of about 1200°C, and (c) using low-activation material as an interlayer. Previously used PdNi brazing material has been successfully tested at a brazing temperature of about 1270°C. The mock-ups produced in this way are sufficient for the HHF tests without neutrons. In a further step to approach the DEMO requirements with higher demands, the use of low-activating titanium with a melting point of 1668°C as bonding material was examined both for brazing and for diffusion welding of tungsten parts. This paper reports on the first successful test results of both high-temperature brazing and diffusion bonding techniques.