ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Kuo Tian, Frederik Arbeiter, Volker Heinzel, Keitaro Kondo, Martin Kubaschewski, Martin Mittwollen, Anton Möslang
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 245-251
Technical Paper | doi.org/10.13182/FST13-758
Articles are hosted by Taylor and Francis Online.
As the core region of IFMIF, the test cell (TC) suffers intense neutron and gamma irradiations. Major material challenges of the TC faced during engineering design phase are outlined and the current key material allocations are described. Actively cooled magnetite concrete is selected as the major biological shielding material for the TC, and actively cooled closed liner made of 316L stainless steel is selected to cover the complete TC internal surfaces. Material selections for sealing gaskets and electric insulations inside the TC are preliminarily defined based on dose rate maps at different locations. Metal based sealing gaskets and glass/ceramic electric insulations are applied in the areas with high dose rate, while organic based gaskets and conventional insulation materials can only be arranged behind sufficient biological shielding. Leak tight welding seams between removable interface shielding plugs and the TC liner are located in the region with very low helium generation rate (≪0.01 appm/fpy) in steel so that cutting and re-welding during the complete IFMIF life span is guaranteed.