ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Kuo Tian, Frederik Arbeiter, Volker Heinzel, Keitaro Kondo, Martin Kubaschewski, Martin Mittwollen, Anton Möslang
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 245-251
Technical Paper | doi.org/10.13182/FST13-758
Articles are hosted by Taylor and Francis Online.
As the core region of IFMIF, the test cell (TC) suffers intense neutron and gamma irradiations. Major material challenges of the TC faced during engineering design phase are outlined and the current key material allocations are described. Actively cooled magnetite concrete is selected as the major biological shielding material for the TC, and actively cooled closed liner made of 316L stainless steel is selected to cover the complete TC internal surfaces. Material selections for sealing gaskets and electric insulations inside the TC are preliminarily defined based on dose rate maps at different locations. Metal based sealing gaskets and glass/ceramic electric insulations are applied in the areas with high dose rate, while organic based gaskets and conventional insulation materials can only be arranged behind sufficient biological shielding. Leak tight welding seams between removable interface shielding plugs and the TC liner are located in the region with very low helium generation rate (≪0.01 appm/fpy) in steel so that cutting and re-welding during the complete IFMIF life span is guaranteed.