ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Keitaro Kondo, Ali Abou-Sena, Frederik Arbeiter, Jörg Brand, Ulrich Fischer, Dennis Große, Axel Klix, Lei Lu
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 228-234
Technical Paper | doi.org/10.13182/FST13-743
Articles are hosted by Taylor and Francis Online.
The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based intense neutron source to test fusion reactor materials under irradiation conditions expected to be experienced by a future fusion power plant (DEMO). The Tritium Release Test Module (TRTM) is intended for the irradiation of solid breeder ceramics as well as beryllium involving in-situ tritium release measurements in IFMIF. During the EVEDA (Engineering Validation Engineering Design Activities) phase, a detailed engineering design for the TRTM has been elaborated. A new 3-dimesional Monte Carlo geometry model of TRTM was prepared for a neutronic analysis directly from engineering CAD data using the McCad conversion software developed at KIT. The analysis was performed with the latest version of the Monte Carlo code McDeLicious, an enhancement to MCNP5 for IFMIF neutronics calculations, using a state-of-the-art nuclear data library FENDL-3. The result emphasizes the importance of the neutron reflector which should be placed behind TRTM in order to make the irradiation properties close to the European HCPB DEMO. Although the achievable dpa is lower than that expected in DEMO, the T/dpa and He/dpa values can be simulated very well when the neutron reflector is appropriately designed, in particularly by utilizing beryllium.